Training¶
Evaluating A Model¶
Once you’ve finished training your model, you can run evaluation on any checkpoint to see PPL scores on OpenWebText, WikiText-103, and Lambada.
To run evaluation, use this command:
cd mistral
conda activate mistral
CUDA_VISIBLE_DEVICES=0 python train.py --config conf/mistral-micro.yaml --nnodes 1 --nproc_per_node 1 --training_arguments.fp16 true --training_arguments.per_device_train_batch_size 2 --model.initial_weights /path/to/runs/my-run/checkpoint-400000/pytorch_model.bin --run_training False
This will skip the training process and run a final evaluation, initializing from the weights of the checkpoint.
To evaluate a particular model, you need to supply the same config that was used to train the model (e.g. conf/mistral-micro.yaml
) in this example.
Example Output¶
If all is successful, you should see output similar to this:
|=>> 08/13 [14:00:22] - mistral - INFO :: Running final evaluation...
...
{'eval_openwebtext_loss': 2.99070405960083, 'eval_openwebtext_ppl': 19.899688127064493, 'eval_openwebtext_runtime': 14.8929, 'eval_openwebtext_samples_per_second': 15.376, 'epoch': None, 'eval_wikitext_loss': 2.90213680267334, 'eval_wikitext_runtime': 26.5247, 'eval_wikitext_samples_per_second': 17.192, 'eval_wikitext_ppl': 18.21302145232096, 'eval_lambada_loss': 2.5298995971679688, 'eval_lambada_runtime': 283.1437, 'eval_lambada_samples_per_second': 17.196, 'eval_lambada_ppl': 12.552245792372315, 'eval_mem_cpu_alloc_delta': 532480, 'eval_mem_gpu_alloc_delta': 0, 'eval_mem_cpu_peaked_delta': 98304, 'eval_mem_gpu_peaked_delta': 1242778112}