Training On Multiple Nodes With DeepSpeed¶
Setting Up DeepSpeed¶
DeepSpeed is an optimization library designed to facilitate distributed training.
The mistral
conda environment (see Installation) will install deepspeed
when set up.
A user can use DeepSpeed for training with multiple gpu’s on one node or many nodes. This tutorial will assume you want to train on multiple nodes.
One essential configuration for DeepSpeed is the hostfile, which contains lists of machines accessible via passwordless SSH and slot counts, which indicate the amount of available gpu’s on each machine.
For this tutorial, we will assume the main machine’s address is machine1
, that machine2
is operating as a
worker machine, and that both machines have 8 gpu’s. The corresponding hostfile should look like this:
machine1 slots=8
machine2 slots=8
DeepSpeed will look for the hostfile at /job/hostfile
on machine1
if a hostfile is not specified with the
--hostfile
argument. An example hostfile can be viewed at conf/deepspeed/hostfile
.
Configuring Training¶
When running Deep Speed and Hugging Face, it is necessary to specify a collection of training settings in a DeepSpeed
json config file. These settings will be used to create the final TrainingArguments
object for model training
and include such things as what optimizer or scheduler to use.
An example json config file is available at conf/deepspeed/z2-small-conf.json
:
{
"optimizer": {
"type": "AdamW",
"params": {
"lr": 0.0006,
"betas": "auto",
"eps": 1e-8,
"weight_decay": 0.1
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"total_num_steps": "auto",
"warmup_max_lr": 0.0006,
"warmup_num_steps": 4000
}
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"overlap_comm": true,
"contiguous_gradients": true,
"cpu_offload": false
},
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto"
}
Launching A Training Run¶
The following command (run on machine1) will launch training across your cluster:
cd mistral
conda activate mistral
deepspeed --num_gpus 8 --num_nodes 2 --master_addr machine1 train.py --config conf/mistral-micro.yaml --nnodes 2 --nproc_per_node 8 --training_arguments.fp16 true --training_arguments.per_device_train_batch_size 4 --training_arguments.deepspeed conf/deepspeed/z2-small-conf.json --run_id gpt2-micro > mistral-micro.out 2> mistral-micro.err
This assumes that the appropriate hostfile is set up at /job/hostfile
on machine1
.
You should see output similar to the following in mistral-micro.out
if training is running as expected:
machine2: {'loss': 6.5859, 'learning_rate': 0.0003537728376673855, 'activations/layer0_attention_weight_max': 6.225409030914307, 'activations/layer0_attention_weight_min': -6.8558735847473145, 'activations/layer1_attention_weight_max': 2.5137383937835693, 'activations/layer1_attention_weight_min': -3.4525303840637207, 'activations/layer2_attention_weight_max': 1.65605628490448, 'activations/layer2_attention_weight_min': -2.03672194480896, 'activations/layer3_attention_weight_max': 1.8134779930114746, 'activations/layer3_attention_weight_min': -1.6253358125686646, 'activations/layer4_attention_weight_max': 1.5045760869979858, 'activations/layer4_attention_weight_min': -1.482985496520996, 'activations/layer5_attention_weight_max': 3.2311043739318848, 'activations/layer5_attention_weight_min': -2.9691357612609863, 'activations/layer6_attention_weight_max': 5.682344913482666, 'activations/layer6_attention_weight_min': -4.275859355926514, 'activations/layer7_attention_weight_max': 0.7755581736564636, 'activations/layer7_attention_weight_min': -0.6805652379989624, 'activations/layer8_attention_weight_max': 1.4897541999816895, 'activations/layer8_attention_weight_min': -1.216135025024414, 'activations/layer9_attention_weight_max': 1.1379717588424683, 'activations/layer9_attention_weight_min': -1.412354826927185, 'activations/layer10_attention_weight_max': 2.4922404289245605, 'activations/layer10_attention_weight_min': -2.0055084228515625, 'activations/layer11_attention_weight_max': 1.4722517728805542, 'activations/layer11_attention_weight_min': -1.2682315111160278, 'epoch': 0.7}
machine1: [2021-07-01 01:24:59,832] [INFO] [logging.py:60:log_dist] [Rank 0] step=150, skipped=17, lr=[0.0003537728376673855], mom=[[0.9, 0.95]]
machine1: [2021-07-01 01:24:59,852] [INFO] [timer.py:154:stop] 0/1200, SamplesPerSec=463.8644895928809
machine1: {'loss': 6.591, 'learning_rate': 0.0003537728376673855, 'activations/layer0_attention_weight_max': 5.9575395584106445, 'activations/layer0_attention_weight_min': -7.12982177734375, 'activations/layer1_attention_weight_max': 2.775029182434082, 'activations/layer1_attention_weight_min': -3.474602222442627, 'activations/layer2_attention_weight_max': 1.8722176551818848, 'activations/layer2_attention_weight_min': -1.927580714225769, 'activations/layer3_attention_weight_max': 1.8707917928695679, 'activations/layer3_attention_weight_min': -1.787396788597107, 'activations/layer4_attention_weight_max': 1.47317636013031, 'activations/layer4_attention_weight_min': -1.391649603843689, 'activations/layer5_attention_weight_max': 3.2698564529418945, 'activations/layer5_attention_weight_min': -2.83353328704834, 'activations/layer6_attention_weight_max': 5.822953701019287, 'activations/layer6_attention_weight_min': -4.2001142501831055, 'activations/layer7_attention_weight_max': 0.782840371131897, 'activations/layer7_attention_weight_min': -0.7528175115585327, 'activations/layer8_attention_weight_max': 1.5653538703918457, 'activations/layer8_attention_weight_min': -1.1807199716567993, 'activations/layer9_attention_weight_max': 1.1230956315994263, 'activations/layer9_attention_weight_min': -1.4319841861724854, 'activations/layer10_attention_weight_max': 2.5261030197143555, 'activations/layer10_attention_weight_min': -1.9104121923446655, 'activations/layer11_attention_weight_max': 1.4361441135406494, 'activations/layer11_attention_weight_min': -1.2555559873580933, 'epoch': 0.7}
...
machine1: [2021-07-01 01:25:12,365] [INFO] [engine.py:1680:_save_zero_checkpoint] zero checkpoint saved hello-world/runs/hello-world-multi-node/checkpoint-150/global_step150/zero_pp_rank_5_mp_rank_00optim_states.pt
...
machine1: [2021-07-01 01:25:48,146] [INFO] [timer.py:154:stop] 0/1460, SamplesPerSec=466.31161256295076
...